Numerical reliability for mixed methods applied to flow problems in porous media

نویسندگان

  • H. Hoteit
  • J. Erhel
چکیده

This paper is devoted to the numerical reliability and time requirements of the Mixed Finite Element (MFE) and Mixed-Hybrid Finite Element (MHFE) methods. The behavior of these methods is investigated under the influence of two factors: the mesh discretization and the medium heterogeneity. We show that, unlike the MFE, the MHFE suffers with the presence of badly shaped discretized elements. Thereat, a numerical reliability analyzing software (Aquarels) is used to detect the instability of a matrix-inversion code generated automatically by a symbolic manipulator. We also show that the spectral condition number of the algebraic systems furnished by both methods in heterogeneous media grows up linearly according to the smoothness of the hydraulic conductivity. Furthermore, it is found that the MHFE could accumulate numerical errors if large jumps in the tensor of conductivity take place. Finally, we compare running-times for both algorithms by giving various numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry

A novel discrete singular convolution (DSC)  formulation  is  presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

Multiscale Model Reduction Methods for Flow in Heterogeneous Porous Media

In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterogeneous media can be drastically reduced. The use of such a computational framework is illustrated at several model problems such as two and t...

متن کامل

Non-Darcian Mixed Convection Flow in Vertical Composite Channels with Hybrid Boundary Conditions

In this article, the effects of viscous dissipation and inertial force on the velocity and temperature distributions of the mixed convection laminar flow in a vertical channel partly filled with a saturated porous medium have been studied. In this regard, the Brinkman–Forchheimer extended Darcy model was adopted for the fluid flow in the porous region. In addition, three different viscous dissi...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001